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Abstract

■ To make optimal predictions in a dynamic environment, the
impact of new observations on existing beliefs—that is, the
learning rate—should be guided by ongoing estimates of
change and uncertainty. Theoretical work has proposed specific
computational roles for various neuromodulatory systems in
the control of learning rate, but empirical evidence is still
sparse. The aim of the current research was to examine the role
of the noradrenergic and cholinergic systems in learning rate
regulation. First, we replicated our recent findings that the
centroparietal P3 component of the EEG—an index of phasic
catecholamine release in the cortex—predicts trial-to-trial
variability in learning rate and mediates the effects of surprise

and belief uncertainty on learning rate (Study 1, N = 17).
Second, we found that pharmacological suppression of either
norepinephrine or acetylcholine activity produced baseline-
dependent effects on learning rate following nonobvious
changes in an outcome-generating process (Study 1). Third,
we identified two genes, coding for α2A receptor sensitivity
(ADRA2A) and norepinephrine reuptake (NET ), as promising
targets for future research on the genetic basis of individual
differences in learning rate (Study 2, N = 137). Our findings
suggest a role for the noradrenergic and cholinergic systems
in belief updating and underline the importance of studying
interactions between different neuromodulatory systems. ■

INTRODUCTION

According to contemporary ideas in neuroscience, the
brain’s overarching function is to construct a model of
its environment to optimally predict its sensory inputs
and thus minimize the amount of surprise or “prediction
error” (Friston, 2010; Doya, 2007; Rao & Ballard, 1999).
In a dynamically changing environment, accurate pre-
diction requires the continuous updating of this internal
model in response to new observations. There is consid-
erable evidence that optimal belief updating can be
captured by Bayesian learning models, in which the
impact of each new observation on existing beliefs (i.e.,
the “learning rate”) depends on the unexpectedness
and the precision of the observation (i.e., the extent to
which it can be used to predict future outcomes; Nassar,
Wilson, Heasly, & Gold, 2010; Friston, 2009; Behrens,
Woolrich, Walton, & Rushworth, 2007). The unex-
pectedness and precision of observations are in turn
determined by various types of uncertainty related to en-
vironmental stochasticity and volatility and the observer’s
ignorance about the current state of the environment.
These various types of uncertainty can be estimated

based on the sequence of previous observations (Nassar
et al., 2010; Behrens et al., 2007).

Neuroimaging studies have identified the neural corre-
lates of various elements of this belief-updating process
(Kolossa, Kopp, & Fingscheidt, 2015; McGuire, Nassar,
Gold, & Kable, 2014; Iglesias et al., 2013; O’Reilly et al.,
2013; Payzan-LeNestour, Dunne, Bossaerts, & O’Doherty,
2013; Chumbley et al., 2012; Behrens et al., 2007). Fur-
thermore, theoretical and computational modeling
work has proposed specific roles for different neuro-
modulatory systems. There is an extensive literature
linking the dopaminergic system to the encoding of
reward prediction errors (Daw & Doya, 2006; Schultz,
Dayan, & Montague, 1997). More recently, it has been
suggested that dopamine (DA) has a key role in the
precision-weighting of prediction errors—not restricted
to the reward domain—and thereby controls learning
rate (Friston et al., 2012; Friston, 2009). Norepinephrine
(NE) has been proposed to encode “unexpected uncer-
tainty” arising from unanticipated changes in a task con-
text (Yu & Dayan, 2005), which may specifically drive
belief updating following sudden environmental change.
In contrast, acetylcholine (ACh) has been proposed to
encode “expected uncertainty,” arising from stochasticity
inherent in the environment (noise or risk) and/or from
known ignorance about the environment (estimation un-
certainty or ambiguity; Yu & Dayan, 2005). Whereas high
levels of stochasticity in otherwise stable environments
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warrant a low learning rate to avoid excessive belief updat-
ing, a high degree of ignorance warrants a high learning
rate to facilitate learning about the environment. Other
computational accounts have proposed that ACh controls
the learning rate in reinforcement-learning algorithms
(Doya, 2002), and facilitates perceptual learning by boost-
ing the bottom–up signaling of sensory stimuli (Moran
et al., 2013). In addition, physiological studies have shown
that ACh and NE both boost thalamocortical (afferent)
relative to intracortical (intrinsic) synaptic transmission,
which presumably enhances the impact of new incoming
stimuli relative to preexisting internal representations and
thus facilitates learning of new information (Hasselmo,
1995, 2006; Yu & Dayan, 2002; Hsieh, Cruikshank, &
Metherate, 2000; Kimura, Fukuda, & Tsumoto, 1999).

Although the dopaminergic, noradrenergic, and cho-
linergic systems have all been associated with the control
of learning rate, empirical evidence for their roles in
belief updating is sparse (but see Marshall et al., 2016).
The notion that DA controls learning rate is supported
by findings that dopaminergic genotype predicts individ-
ual differences in learning rate (Set et al., 2014; Krugel,
Biele, Mohr, Li, & Heekeren, 2009). A role for the nor-
adrenergic system in belief updating following abrupt task
changes is broadly consistent with evidence that pharma-
cological manipulations and lesions of this system in ani-
mals affect reversal learning and attentional set shifting
(Seu, Lang, Rivera, & Jentsch, 2009; McGaughy, Ross, &
Eichenbaum, 2008; Newman, Darling, & McGaughy,
2008; Lapiz, Bondi, & Morilak, 2007; Tait et al., 2007;
Lapiz & Morilak, 2006; Devauges & Sara, 1990). More spe-
cific, although indirect, evidence for a role of the nor-
adrenergic system in learning rate regulation has been
provided by studies that used pupil dilation as an index
of locus coeruleus (LC; the main noradrenergic nucleus
in the brain) activity in humans (Browning, Behrens,
Jocham, O’Reilly, & Bishop, 2015; Silvetti, Seurinck, van
Bochove, & Verguts, 2013; Nassar et al., 2012). Finally,
pharmacological studies in humans have provided evi-
dence that cholinergic stimulation and suppression re-
spectively promote and suppress belief updating about
contextual probabilities (Marshall et al., 2016; Vossel
et al., 2014).

We recently reported evidence for a role of the cate-
cholamine (NE and DA) systems in belief updating
(Jepma et al., 2016), using a “predictive inference” task
that requires participants to repeatedly predict the next
location on a number line in a sequence (Nassar et al.,
2010). In this task, the location outcome on each trial
is drawn from a Gaussian distribution that is centered
on a specific point of the number line but occasionally
shifts to a new point on the number line; hence the
outcome-generating process contains both noise and un-
predictable “change points.” Trial-by-trial variation in the
outcome-evoked centroparietal P3 component of the
EEG predicted learning rate in this task and formally
mediated the effects of model-based estimates of

outcome-evoked surprise and preexisting belief uncer-
tainty on learning rate (Jepma et al., 2016). In light of ev-
idence for an association between the centroparietal P3
and stimulus-evoked phasic catecholamine release in
the cortex (Polich, 2007; Nieuwenhuis, Aston-Jones, &
Cohen, 2005; Pineda, Foote, & Neville, 1989), these find-
ings are consistent with a role of the catecholamine sys-
tems in learning rate regulation. Corroborating this idea,
we found that a pharmacological manipulation of cate-
cholamine activity—using the NE transporter blocker
atomoxetine—affected learning rate following change
points, in a way that depended on participants’ baseline
(placebo session) learning rate (Jepma et al., 2016).
The present research had three aims. First, we exam-

ined whether we could replicate the relationships
between P3 amplitude, surprise and uncertainty, and
learning rate found in our previous study (Study 1). Sec-
ond, we aimed to gain further insight into the specific
role of the noradrenergic system in belief updating.
To this end, we examined the effects of clonidine—a
centrally acting α2 agonist that predominantly acts to at-
tenuate baseline NE activity by agonizing presynaptic α2
receptors (Svensson, Bunney, & Aghajanian, 1975)—on
performance of the predictive inference task (Study 1).
Clonidine has been shown to reduce P3 amplitude in pre-
vious studies (Brown et al., 2016; Nieuwenhuis et al.,
2005; but see Brown, van der Wee, van Noorden, Giltay,
& Nieuwenhuis, 2015); hence, we reasoned that it may
also reduce learning rate via its effects on the α2 recep-
tor. In addition, we examined whether interindividual
variation in noradrenergic genotypes were associated
with individual differences in learning rate (Study 2).
Third, we aimed to examine the role of the cholinergic
system in belief updating. Therefore, in Study 1, we com-
pared the effects of clonidine to those of scopolamine, an
anticholinergic agent that blocks the activity of the mus-
carinic ACh receptor. Based on the proposed computa-
tional roles of ACh and NE in encoding, respectively,
expected and unexpected uncertainty (Yu & Dayan,
2005), one could predict that scopolamine influences
the effects of noise and estimation uncertainty (both
forms of expected uncertainty) on learning rate, whereas
clonidine influences the effect of change points (un-
expected uncertainty) on learning rate. However, given
the evidence that ACh and NE both enhance the influ-
ence of incoming sensory stimuli relative to internal rep-
resentations, due to their effects on intrinsic versus
afferent synaptic transmission (Hasselmo, 1995), an alter-
native prediction is that pharmacological suppression of
either system will result in an overall reduction of learn-
ing rate. Similar effects of clonidine and scopolamine
would also be consistent with recent findings that these
two drugs similarly affect measures of temporal attention,
perceptual sensitivity, and ERPs, presumably due to bi-
directional interactions between the basal forebrain and
the LC (Brown et al., 2016; Brown, Tona, et al., 2015;
Brown, van der Wee, et al., 2015).
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STUDY 1

Methods

Participants

Eighteen healthy participants (mean age = 21, range =
18–26; 15 women) took part in three experimental
sessions, separated by 1 week, in return for A140. Exclu-
sion criteria included history or presence of neurological
or psychiatric disorders; use of prescribed medication,
smoking, pregnancy, and a systolic blood pressure below
100 mm Hg; a diastolic blood pressure below 70 mm Hg;
or a heart rate below 65 beats per minute in rest. Par-
ticipants were instructed to abstain from using recrea-
tional drugs, caffeine, or alcohol from 15 hr before the
start of each session. All participants provided written in-
formed consent, and the study was approved by the med-
ical ethics committee of the Leiden University Medical
Center.
Participants received a single oral dose of clonidine, a

single oral dose of scopolamine (1.2 mg), and a placebo
in a randomized, double-blind, counterbalanced double-
dummy crossover design. The first 11 participants re-
ceived a clonidine dose of 175 μg. As the 11th participant
showed an unexpected large drop in blood pressure of
35 mm Hg systolic, but without clinical consequences,
60 min after the ingestion of clonidine 175 μg (blind
was broken by the supervising physician), we reduced
the dose of clonidine to 150 μg for the final seven
participants.
One participant was excluded from the analyses be-

cause of poor performance on the predictive inference
task in all sessions (see below); hence, our analyses of
this task were based on 17 participants.

Procedure

During each session, participants received a capsule of
clonidine or placebo at 09.35 a.m. and a capsule of sco-
polamine or placebo at 10.35 a.m. The different kinetic
profiles of clonidine and scopolamine necessitated
administrations at different times before testing. This
double-dummy design resulted in one clonidine session
(i.e., clonidine verum plus scopolamine placebo), one
scopolamine session (clonidine placebo plus scopol-
amine verum), and one placebo session (clonidine plus
scopolamine placebos). Treatment order was counter-
balanced across participants.
At the start of each session (t= −20 min), a peripheral

intravenous cannula was placed and connected to an in-
travenous 0.9% NaCl (saline) drip to be able to increase
blood pressure through volume expansion and to have
an entryway to administer escape medication in the case
of a severe drop in tension and/or heart rate. Further-
more, three cardio electrodes were applied to the partic-
ipant’s chest and connected to an electrocardiography
monitor. At t = 0 min, participants ingested a microcrys-
talline cellulose-filled capsule with either clonidine or

placebo. At t = 60 min, participants ingested a microcrys-
talline cellulose-filled capsule with either scopolamine or
placebo. At t = 120 min, participants performed the
predictive inference task, which lasted approximately
30 min. This task was part of a test battery of four cogni-
tive tasks, the other three tasks have been reported else-
where (Brown et al., 2016; Brown, Tona, et al., 2015;
Brown, van der Wee, et al., 2015).

To measure the effects of clonidine and scopolamine
on alertness, we administered a 40-trial simple RT
(SRT) task upon participants’ arrival in the lab, as well
as right before and after performance of the predictive
inference task. Participants had to respond as quickly as
possible whenever a white circle appeared on the
computer screen. SOA was jittered between 500 and
1250 msec, with a mean of 1000 msec. This task lasted
less than 2 min. In addition, blood pressure and heart
rate were measured four times per hour from t = 0 on-
ward with an Omron M10-IT automatic sphygmomanom-
eter. Participants’ fitness was checked at t= 240 min, and
participants were sent home via public transportation if
their blood pressure and heart rate were close to the
values measured at t = −20 min. If their blood pressure
and heart rate had not returned to normal yet, they were
kept for further observation.

Predictive Inference Task

During this task, participants observed locations on a
horizontal number line—one location per trial—and
were asked to predict each next location as accurately
as possible. The number line ranged from 0 to 300 in
units of 1, and the location on each trial was determined
by the following process. On each trial, a number was
randomly drawn from a Gaussian distribution, the mean
of which changed at unsignaled moments—referred to
as change points. The probability of a change point
was .10 on each trial, except for the first three trials
after the previous change point on which this probability
was 0. When a change point occurred, a new mean for
the number-generating distribution was randomly drawn
from a uniform distribution ranging from 0 to 300 in
units of 1. In each experimental session, participants
completed two 200-trial blocks of this task. The SD of
the number-generating distribution was 10 (low noise)
in one block and 25 (high noise) in the other block
(Figure 1A). We used six instantiations of this number-
generating process—two for each noise level—such that
participants experienced new sequences of outcomes in
each session. The outcome sequences did not differ
across participants.

Throughout the task, a horizontal number line, ranging
from 1 to 300, was presented on the screen (Figure 1B).
At the start of each trial, participants selected a specific
location on the number line (their prediction) using a
mouse, after which a small green oval was displayed
underneath the selected location. One second later, an
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arrow accompanied by the number outcome on that trial
was displayed in red above the corresponding location
on the number line, and the difference between this
location and the participant’s prediction was indicated
by a gray bar. Half a second later, the next trial started,
and participants could update their prediction. To
ensure that learning rates were always in the 0–1 range,
we constrained participants’ prediction space to the
interval in between (and including) their previous pre-
diction and the most recent outcome (Nassar et al.,
2010, 2012).

We embedded the task in a cover story according to
which the number line represented the earth and the
outcomes reflected locations of missile attacks from
outer space. We instructed participants that on each trial
they could place a “laser shield” above a specific location
on earth to prevent that location from being hit. To make
the number-generating process as transparent as possi-
ble, we gave participants the following two additional
instructions: (i) on their way to earth the missiles pass
through an asteroid layer, causing random deflections
of their direction and therefore variation in impact
locations across trials, and (ii) the location at which the

missiles are aimed changes at unpredictable moments.
These instructions provide intuitive information about
the SD of the number-generating distribution (noise)
and the occasional change points, respectively. Before
starting the experimental blocks, participants completed
two 30-trial practice blocks.
One participant fully updated her predictions to the

most recent outcome on nearly all trials in all sessions,
suggesting a misunderstanding of the task structure.
We excluded this participant from further analyses.

Computation of Trial-specific Prediction Error and
Learning Rate

We defined the prediction error on each trial t as the
difference between the actual and predicted outcome
location, that is, prediction error(t) = outcome(t) −
prediction(t). We defined the learning rate on each trial
as the prediction update from that trial to the next, as a
fraction of the most recent prediction error, that is,
learning rate(t) = [Prediction(t + 1) − Prediction(t)]/
prediction error(t).

Figure 1. The predictive
inference task. (A) The number
outcomes in a low-noise
(SD = 10; top) and a high-
noise (SD = 25; lower panel)
block. The blue dots indicate
the outcomes on each trial;
these were drawn from a
normal distribution of which
the mean (horizontal black
line) changed at unsignaled
moments (change points).
The vertical lines indicate
obvious (straight lines) and
nonobvious (dotted lines)
change points. (B) On each
trial, participants predicted
the next location on a number
line, after which the outcome
location was shown and
participants could update
their prediction for the
next trial.
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Normative Model

We also used an approximately Bayesian learning model
that has been shown to capture key aspects of partici-
pants’ performance on the predictive inference task
(Nassar et al., 2010, 2012). The model updates beliefs
about the current outcome-generating distribution
according to a delta rule with a dynamic learning rate,

Btþ1 ¼ Bt þ αt � δt (1)

where Bt is the model’s prediction about the generative
distribution’s mean, αt is the learning rate, and δt is the
prediction error (i.e., difference between observed and
predicted outcome) on trial t.
The model uses the sequence of observed outcomes

to compute two latent variables—change point proba-
bility (Ω) and relative uncertainty (τ)—on each trial.
Together, these latent variables in turn determine trial-
specific learning rate, according to

αt ¼ Ωt þ 1−Ωtð Þτt (2)

where Ωt reflects the posterior probability that a change
point has occurred since the previous trial, which in-
creases transiently following surprising outcomes. The
model computes Ωt following each new outcome (Xt)
as a function of the likelihood of that outcome if a change
point had occurred and the likelihood of that outcome if
a change point had not occurred:

Ωt ¼ U Xtj0300ð ÞH
U Xt 0; 300j ÞH þN Xt Bt;σ2

t

�� �
1−Hð Þ�� (3)

where U is the uniform distribution from which Xt is
generated if a change point occurred, N is the predictive
normal distribution if a change point did not occur, Bt is
the model’s prediction on trial t, σ2 is the total variance
of the predictive distribution; and H is the hazard rate.
The hazard rate is the proportion of trials on which a
change point occurred (i.e., the prior probability of
change points), which was .09 in our experiment.
The total uncertainty about the next outcome (σ2, i.e.,

the total variance of the predictive distribution) is the
sum of the variance of the generative distribution (σN

2 ,
i.e., noise) and the uncertainty about the mean of the
generative distribution (σμ

2). Although outcome uncer-
tainty due to noise is constant within each task block, un-
certainty attributable to imprecise knowledge of the
mean of the generative distribution decreases with each
observed outcome in a stable regime. Just as the gain in a
Kalman filter, appropriate learning in our task depends
on the proportion of total outcome uncertainty that is
due to an imprecise estimate of the generative mean,
and we define relative uncertainty (τ) as this proportion.
On each trial, relative uncertainty is computed according
to the variance on the predictive distribution over gener-
ative means (a weighted mixture of change point and

nonchange point conditional distributions) according to
the following equation:

τtþ1 ¼ Ωtσ2
N þ 1−Ωtð Þτtσ2

N þ Ωt 1−Ωtð Þ δt 1−τtð Þð Þ2
Ωtσ2

N þ 1−Ωtð Þτtσ2
N þ Ωt 1−Ωtð Þ δt 1−τtð Þð Þ2 þ σ2

N

(4)

where the numerator reflects the variance on the predic-
tive distribution over possible generative means (σμ

2) and
the denominator is the total outcome variance, which
also includes the noise variance (McGuire et al., 2014;
Nassar et al., 2012). Relative uncertainty is computed in
anticipation of each upcoming outcome and therefore
reflects outcome-independent adjustments in learning
(Nassar et al., 2010).

We applied the model to each participant’s observed
sequence of outcomes while fixing hazard rate (H ) to
the actual proportion of change point trials (.09) to ob-
tain per-trial estimates of change point probability and
relative uncertainty. Hazard rate can also be treated as
a free parameter that is estimated by fitting the model
to each participant’s prediction data, thereby capturing
interindividual variability in learning rate due to different
prior expectations about the frequency of change points.
To examine potential drug effects on the hazard rate pa-
rameter, we fitted the model to each participant’s predic-
tions in each session by minimizing the total squared
difference between the participant’s and the model’s pre-
dictions, using a constrained search algorithm (fmincon
in MATLAB).

In addition, we also used a recent extension of the nor-
mative model (Nassar et al., 2016) to obtain subjective
estimates of change point probability and relative
uncertainty. This involves running the normative model
across the prediction errors experienced by participants,
rather than the observed outcomes. To this end, model
variables were computed recursively by first determining
the uncertainty about the current mean of the outcome-
generating distribution according to the relative uncer-
tainty, change point probability and prediction error from
the previous trial:

σ2
μ ¼ Ωtσ

2
N þ 1−Ωtð Þτtσ2

N þ Ωt 1−Ωtð Þδt 1− τtð Þ (5)

Relative uncertainty was computed by expressing uncer-
tainty about the generative mean as a fraction of total
uncertainty about the next outcome location,

τtþ1 ¼
σ2
μ

σ2
μ þ σ2

N
(6)

This relative uncertainty estimate, along with the variance
on the outcome distribution (noise; σN

2 ) was used to
compute the change point probability associated with
each new prediction error:

Ωtþ1 ¼ H=300

H=300þN δtþ1 0; σ2
N

1−τtþ1

���
�
1−Hð Þ

� (7)
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where H is the actual proportion of change point trials
(.09) and δt+1 is the new prediction error. Subjective
estimates of change point probability and relative
uncertainty were computed by evaluating Equations 5
and 6 according to the trial-by-trial prediction errors
made by each individual participant.

EEG Recording and Analyses

We recorded EEG from 64 Ag/AgCl scalp electrodes and
from the left and right mastoids. We measured the hori-
zontal and vertical EOG using bipolar recordings from
electrodes placed approximately 1 cm lateral of the outer
canthi of the two eyes and from electrodes placed ap-
proximately 1 cm above and below the participant’s right
eye. The EEG signal was preamplified at the electrode to
improve the signal-to-noise ratio and amplified with a
gain of 16× by a BioSemi ActiveTwo system (BioSemi
B.V., Amsterdam, the Netherlands). The data were digi-
tized at 24-bit resolution with a sampling rate of 512 Hz
using a low-pass fifth-order sinc filter with a half-power
cutoff of 102.4 Hz. Each active electrode was measured
online with respect to a common mode sense active elec-
trode producing a monopolar (nondifferential) channel.

EEG data were processed using a combination of
BrainVision Analyzer 2 (Brain Products) and MATLAB
(The Mathworks), the latter via custom scripting and sub-
routines from the EEGLAB toolbox (Delorme & Makeig,
2004). Continuous data were first rereferenced to the av-
erage of the left and right mastoid channels and high-
pass filtered to 0.1 Hz (12 dB/octave). Ocular artifacts
were removed using a regression-based algorithm
(Gratton, Coles, & Donchin, 1983), after which the data
were low-pass filtered up to 30 Hz (12 dB/octave). Noisy
channels were then identified by visual inspection of
signal variance and interpolated via spherical spline inter-
polation. Data epochs were extracted from 250 msec be-
fore to 1000 msec after outcome onset on each trial and
baseline-corrected to the 250-msec interval preceding
outcome onset. All epochs were then inspected for viola-
tions of amplitude (any sample from any scalp channel
with an absolute voltage > 120 μV) and gradient (any
scalp channel where absolute slope of a fitted line to
the data was >65 μV/sec) artifact criteria. In cases where
no more than one channel was identified as artifactual,
this channel was interpolated and the associated epoch
was retained for subsequent analysis; otherwise, that ep-
och was discarded. A mean of 9.2 ± 12.8% of epochs for
the placebo sessions, 11.1 ± 12.0% of epochs for the clo-
nidine sessions, and 14.9 ± 16.9% of epochs for the sco-
polamine sessions were discarded. For all analyses, our
measurement of the outcome-locked P3 component
was based on the mean signal across a cluster of five cen-
troparietal electrodes that was centered on the region of
maximum component amplitude in the grand-averaged
topography (corresponding to the location of Pz accord-
ing the standard 10/20 measurement system). For single-

trial analysis of the P3, waveforms were low-pass filtered
to 6 Hz to enhance signal-to-noise ratio and P3 amplitude
was measured as the mean voltage between 340 and
480 msec postoutcome.
To identify significant effects of drug treatment on the

trial-averaged centroparietal ERP and correct for multiple
comparisons, we computed nonparametric permutation
tests based on temporal clustering (Maris & Oostenveld,
2007). The following steps were followed for each pair-
wise comparison across the different treatment levels
(placebo vs. clonidine, placebo vs. scopolamine, cloni-
dine vs. scopolamine). First, a paired t test was per-
formed to identify individual time points at which the
effect of treatment was significant ( p < .05) without cor-
rection for multiple comparisons, and such time points
were combined into clusters based on their temporal ad-
jacency. Next, the t scores of all time points comprising a
cluster were summed, which yielded a cluster-level statis-
tic (i.e., a cluster t value) for each identified cluster. Sub-
sequently, a null distribution of cluster-level statistics was
computed via the following procedure: For each of 1000
iterations, the treatment labels were randomly reassigned
within participants, the above-described temporal clus-
tering procedure was executed on the permuted data,
and the maximum absolute cluster-level statistic derived
from this procedure was stored. Finally, the absolute
cluster-level statistics of all empirical clusters were com-
pared with the distribution of values obtained from the
permutation procedure. All time points comprising a
cluster with a statistic larger than 95% of the permutation
distribution were considered significant, corresponding
to a cluster-corrected alpha level of .05.

Statistical Analyses

We conducted multilevel regression and mediation anal-
yses on single-trial measures of learning rate and P3 am-
plitude, using the Multilevel Mediation toolbox; wagerlab.
colorado.edu/tools (Atlas, Bolger, Lindquist, & Wager,
2010; Wager, van Ast, et al., 2009; Wager, Waugh, et al.,
2009). As the occasional change points in the outcome-
generating process produced exceptionally large pre-
diction errors, the data contained some strong “outlier”
trials. To deal with this and to account for potential non-
linearity of the relationships of interest, we replaced the
prediction error, learning rate, and P3 variables with their
ranks in all regression and mediation analyses. We used
bootstrapping (100,000 bootstrap samples) for signifi-
cance testing, which does not require the assumption
of normality for valid inference.

Regression analyses. We tested for effects of (absolute)
prediction error, SD of the generative distribution, treat-
ment (two dummy variables coding for clonidine and
scopolamine), and their interactions on learning rate
and P3 amplitude. Trials with prediction errors of 0 were
excluded from the analysis on learning rate (6.0% of all
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trials), as participants could not update their prediction
on those trials (see task description above). In the
analysis on P3 amplitude, we included a binary regressor
that indicated whether or not the prediction error was
exactly zero.

Mediation analyses. We further examined the relation-
ships between trial-to-trial variation in prediction error,
P3 amplitude, and learning rate using multilevel media-
tion. Mediation analyses test whether the relationship be-
tween an independent variable (X ) and a dependent
variable (Y ) can be explained by a third variable (M;
the mediator).
In our first mediation model, we used prediction error

as the X variable, learning rate as the Y variable, and P3
amplitude as the M variable. Thus, this model tested
whether (i) there was an effect of prediction error on
P3 amplitude (path a); (ii) P3 amplitude was predictive
of learning rate, when controlling for prediction error
(path b); and (iii) the relationship between prediction
error and learning rate was formally mediated by P3 am-
plitude, that is, whether the relationship between predic-
tion error and learning rate (path c) decreased when
controlling for P3 amplitude (c − c0, equivalent to a * b).
In additional mediation models, we used the computa-
tional variables change point probability and relative
uncertainty (obtained by running the normative model
either over the observed outcomes or over the experi-
enced prediction errors; see Normative Model section
above), in separate analyses, as the X variable.
We used the ranks of the X, M, and Y variables in all

mediation models. Trials with prediction errors of 0 were
excluded from the mediation analyses. We included treat-
ment and the SD of the generative distribution as co-

variates in all mediation models and tested the significance
of all effects using a bootstrap procedure (100,000 boot-
strap samples).

Results

Physiological and Alertness Data

As expected, clonidine lowered systolic (mean tension
95 mm Hg) and diastolic (61 mm Hg) blood pressure
relative to placebo (mean tension 110/76 mm Hg), also
during performance of the predictive inference task
(t = 120–150 min), F(2, 34) = 34.6, p < .0005 and F(2,
34) = 19.8, p < .0005 for systolic and diastolic pressure,
respectively (Figure 2A). There were no differences
between the placebo and scopolamine sessions in sys-
tolic or diastolic blood pressure. Scopolamine (65/min),
as expected, lowered heart frequency relative to placebo
(71/min) and clonidine (71/min), also during perfor-
mance of the predictive inference task, F(2, 34) = 5.1,
p = .01 (Figure 2B). The differences in blood pressure
and heart rate were significant between clonidine and
scopolamine (all ps < .02).

Results from the SRT task, administered before drug
administration (at arrival of the participant), right before,
and right after performance of the predictive inference
task, suggest that clonidine increased SRT (336 msec) rel-
ative to placebo (279 msec) and scopolamine (317 msec),
F(2, 34) = 10.1, p < .0005. Furthermore, mean SRT
increased as the test session progressed, F(2, 34) =
19.8, p < .0005. As depicted in Figure 2C, clonidine in-
creased SRT more strongly as the test session progressed
than scopolamine and placebo, F(4, 68) = 3.7, p = .009.
Pairwise comparisons for pretest and posttest indicated

Figure 2. Cardiovascular and
alertness results. (A) Blood
pressure data for the three
treatments. The shaded gray
area indicates significant
pairwise comparisons between
clonidine and placebo
( p < .05, uncorrected).
(B) Heart frequency for the
three treatments. The shaded
gray area indicates significant
pairwise comparisons between
scopolamine and placebo
( p < .05). (C) Results from
a SRT task, administered at
the start of the test session
(predrug administration)
and right before (pretest) and
after (posttest) participants
performed the predictive
inference task.
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that clonidine and scopolamine reliably differed from
placebo during both the pretest and the posttest (all
ps < .04).

Behavioral and Electrophysiological Results

As in our previous study ( Jepma et al., 2016), learning
rate increased with increasing prediction error (t(16) =
5.9, bootstrap p< .001; Figure 3A). In addition, the effect
of prediction error on learning rate was stronger in the
low-noise than the high-noise block (Prediction error ×
Noise interaction, t(16) = 1.8, bootstrap p = .03). The
significance of these effects in a rank-based regression
analysis suggests that they were not driven by a small
number of outlier trials.

There were no significant main effects of prediction er-
ror or noise and no Prediction error × Noise interaction
effect on P3 amplitude (all bootstrap ps > .5; Figure 3B).
However, P3 amplitude was increased on trials when

prediction error was exactly 0 (t(16) = 1.9, bootstrap
p = .02), possibly reflecting the rewarding nature and/
or atypical consequence (i.e., no possibility of updating
the next prediction) of perfectly predicted outcomes.
Note that we reported a significant positive effect of
prediction error on P3 amplitude in our previous study
( Jepma et al., 2016). This apparent inconsistency be-
tween our two studies can be explained by the fact that
we used standard linear regression in our previous study
but rank-based regression in the current study. Indeed,
standard linear regression on the data from the current
study did reveal a significant effect of prediction error
on P3 amplitude. That this effect disappeared when using
a rank-based analysis suggests that it was driven by a subset
of trials with very large prediction errors, although there is
no clear relationship between prediction error and P3
amplitude across the lower range of prediction errors.
Below, we report three sets of analyses and results.

First, we report the within-subject relationships between

Figure 3. Relationships
between prediction error, P3
amplitude, and learning rate.
Note that we show the raw data
here, although our statistical
analyses were rank-based.
(A) Learning rate as a function
of prediction error, SD of the
generative distribution and
treatment. Learning rates are
sorted into 20 bins according to
single-trial prediction error,
pooled across participants.
The lines show the linear fit
to the unbinned single-trial
data. (B) Prediction error as a
function of P3 amplitude, SD of
the generative distribution and
treatment. Prediction errors are
sorted into 20 bins according to
single-trial P3 amplitude, pooled
across participants. Single-trial
P3 amplitudes were z-scored
separately for each participant
and session, before sorting.
Although we tested for effects
of prediction error on P3
amplitude in our statistical
analyses, we here plot P3
amplitude on the x axis to
allow for a comparison of its
relationships with prediction
error and learning rate (B and
C). (C) Learning rate as a
function of P3 amplitude, SD of
the generative distribution and
treatment. Plotting procedure
was the same as above.
(D) Mediation model and
results. ***p < .001,
ns = not significant.

8 Journal of Cognitive Neuroscience Volume X, Number Y



trial-to-trial fluctuations in prediction error magnitude, P3
amplitude, and learning rate. Second, we report how P3
amplitude and learning rate relate to trial-to-trial fluctua-
tions in two latent variables, change point probability and
relative uncertainty, that drive learning rate according to
a previously established normative model (Nassar et al.,
2010, 2012). The aim of these two analyses was to
examine if we could replicate our recent findings that
P3 amplitude predicts learning rate and mediates the
effect of prediction error magnitude, change point prob-
ability, and relative uncertainty on learning rate (Jepma
et al., 2016). Third, we report the effects of our clonidine
and scopolamine manipulations on learning rate and P3
amplitude.

P3 Amplitude Predicts Learning Rate

We used multilevel rank-based mediation to assess
whether P3 amplitude mediated the effect of prediction
error on learning rate (Figure 3D). In this mediation
model, there was no significant effect of prediction error
on P3 amplitude (path a, p = .07), consistent with the
results above. Importantly, however, larger P3 amplitudes
predicted higher learning rates when controlling for pre-
diction error (path b, p < .001; see Figure 3C for the re-
lationship between P3 amplitude and learning rate, not

controlled for prediction error). P3 amplitude did not for-
mally mediate the effect of prediction error on learning
rate (a * b, p = .32), which was to be expected given
the absence of a significant path a.

P3 Amplitude Mediates the Effects of Surprise
and Belief Uncertainty on Learning Rate

In two additional rank-based mediation analyses, we ex-
amined the relationships between trial-by-trial fluctua-
tions in two latent variables that drive learning rate
according to a normative model, P3 amplitude, and learn-
ing rate. The normative model assumes that participants
use the observed sequence of outcomes to compute two
latent variables on each trial—change point probability
and relative uncertainty—which together determine
learning rate. Change point probability approximates
the posterior probability that a change point has oc-
curred on the most recent trial, given all previous out-
comes; hence, it reflects the unexpectedness of the
most recent outcome. Relative uncertainty reflects the
uncertainty about the mean of the outcome distribution
before a new outcome is observed, which depends in-
versely on the number of prior observations attributable
to the current environmental state.

Figure 4. Relationships
between change point
probability and relative
uncertainty, P3 amplitude
and learning rate. (A) Both
change point probability and
relative uncertainty predict
P3 amplitude. Change point
probability and relative
uncertainty estimates are
sorted into 20 bins according
to z-scored single-trial P3
amplitude, pooled across
participants. The lines show
the linear fit to the unbinned
single-trial data. (B) Mediation
models and results.
***p < .001.
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In line with our previous findings (Jepma et al., 2016),
both change point probability and relative uncertainty
were positive predictors of P3 amplitude (path a, both
ps < .001; Figure 4A), corroborating the idea that P3 am-
plitude reflects both the unexpectedness of an outcome
and the preexisting belief uncertainty. Furthermore, P3
amplitude formally mediated the effect of both change
point probability and relative uncertainty on learning rate
(path a * b, both ps < .001; Figure 4B). That change
point probability predicted P3 amplitude, whereas pre-
diction error did not, may seem counterintuitive given
the strong relationship between prediction error and
change point probability. However, change point proba-
bility also depends on the current level of uncertainty
about the next outcome, which is determined by the
amount of random outcome variability (noise) and the
observer’s ignorance about the mean of the outcome dis-
tribution (estimation uncertainty). Specifically, the same
absolute prediction error signals a larger change point
probability when the noise level and/or estimation uncer-
tainty are lower. Therefore, our finding that P3 amplitude
tracks change point probability, but not prediction error
in itself, suggests that P3 amplitude is sensitive to the
context in which prediction errors occur, that is, to
how unexpected an outcome is given the current level
of uncertainty.

In the previous analysis, we obtained trial-by-trial
estimates of change point probability and relative uncer-
tainty by running the normative model over the observed
sequence of outcomes. A potential problem with this
approach is that the predictions made—and thus the pre-
diction errors experienced—by the model may not al-
ways perfectly match those of the participant. If this is
the case, participants’ subjective change point probability
and relative uncertainty values will differ from those com-
puted by the model. To address this issue, we obtained
subjective measures of change point probability and un-
certainty, using a method recently developed by Nassar
et al. (2016; see Methods), and repeated the above-
described mediation analyses using the ranks of these
subjective values as predictor variables. These analyses
showed that subjective estimates of both change point
probability and relative uncertainty were related to P3
amplitude as well (path a, p values are .03 and <.001,
respectively). In addition, P3 amplitude mediated the
effects of both subjective change point probability and
subjective relative uncertainty on learning rate ( p values
are .02 and .009, respectively).

Baseline-dependent Effects of Clonidine and
Scopolamine on Learning Rate following
Nonobvious Change Points

Both clonidine and scopolamine reduced P3 amplitude
(t(16) = 2.6, p = .02 and t(16) = 3.6, p = .003, respec-
tively; Figure 5). However, neither clonidine nor scopol-
amine affected learning rate (both ps > .15), and there

were no Treatment × Prediction error or Treatment ×
Noise interactions on learning rate or P3 amplitude (all
ps > .11). The effects of the model-based variables
change point probability and relative uncertainty on
learning rate and P3 amplitude did not interact with
either of the treatments (all ps > .12). Finally, the hazard
rate parameter in the clonidine and scopolamine ses-
sions, obtained by fitting the normative model to each
participant’s predictions, did not differ from the hazard
rate in the placebo session (mean estimated hazard
rate= 0.40 (SD = 0.20), 0.36 (SD = 0.17), and 0.38
(SD = 0.20), respectively; ps > .6). As in previous studies
( Jepma et al., 2016; Nassar et al., 2010), the model-
estimated hazard rates were higher than the actual
hazard rate (0.09 in this study; see Methods), suggesting
that human observers on this task consistently overesti-
mate the frequency at which change points occur.
Thus, both drugs had an overall suppressive effect on

the P3 amplitude but did not affect task performance at
the group mean level. Importantly, previous studies have
shown that the effects of catecholaminergic drugs de-
pend on individuals’ arousal state or baseline level of cat-
echolamine activity (Gibbs, Bautista, Mowlem, Naudts, &
Duka, 2014; de Rover et al., 2012; Cools et al., 2009;
Luksys, Gerstner, & Sandi, 2009; Cools & Robbins,
2004; Coull, 2001). Consistent with this, we previously
found that the NE transporter (NET) blocker atomoxe-
tine increased learning rates in participants who normally
(in a placebo session) used low learning rates but de-
creased learning rates in participants who normally used
high learning rates (Jepma et al., 2016). This baseline-
dependent atomoxetine effect was stronger than pre-
dicted by regression to the mean for change point trials,
but not for trials on which no change point occurred. To
test for similar baseline-dependent drug effects in

Figure 5. Grand-averaged outcome-evoked P3 (mean signal across a
cluster of five centroparietal electrodes centered on location Pz) in the
placebo, clonidine, and scopolamine session. Shaded areas indicate
SEM. The blue and red horizontal lines indicate the time points at which
signal amplitude in the clonidine and scopolamine session, respectively,
was significantly different compared with the placebo session ( p < .05,
cluster-corrected). There were no reliable amplitude differences
between the clonidine and scopolamine traces after cluster correction.
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this study, we computed the across-subject correlation
between mean learning rate in the placebo session
(LRplacebo) and the effect of each drug on learning rate
(LRclonidine − LRplacebo and LRscopolamine − LRplacebo, in
separate analyses). As in our previous study, we sepa-
rately computed these correlations for the trials on which
no change point occurred, the trials on which an obvious
change point occurred (change point outcome > 2 SDs
from previous mean), and the trials on which a less
obvious change point occurred (change point outcome
< 2 SDs from previous mean). These analyses revealed
that individual differences in learning rate in the placebo
session negatively correlated with the clonidine and
scopolamine effects on learning rate (Figure 6A). Thus,
both drugs were associated with increased learning rates
in participants with low baseline (i.e., placebo) learning
rates and with decreased learning rates in participants
with high baseline learning rates. For both drugs, these
negative correlations were strongest for the nonobvious
change point trials. Importantly, however, regression to
the mean likely contributed to these negative correla-
tions. We therefore performed two additional analyses
to test for baseline-dependent drug effects above and
beyond regression to the mean.

First, we compared our observed correlation coeffi-
cients against the distribution of correlation coefficients
predicted exclusively by regression to the mean, using
permutation testing. Specifically, we computed the
above-described across-subject correlation 100,000 times,
each time randomly assigning “placebo” versus “drug”
labels to each participant’s placebo and drug session
(separately for the placebo vs. clonidine and placebo
vs. scopolamine sessions). This analysis revealed that
the baseline-dependent effects of both clonidine and sco-
polamine on learning rate were stronger than predicted
by regression to the mean for the nonobvious change
point trials (proportion of permutation distribution be-
low the observed correlation = .002 and .005 for cloni-
dine and scopolamine, respectively). However, for the
trials on which no change point occurred and on which
an obvious change point occurred, the observed negative
correlations did not differ from those predicted by
regression to the mean (proportion of permutation distri-
bution below the observed correlation > .3 for all com-
parisons). To further examine the effect of change point
probability on baseline-dependent drug effects, we re-
peated the permutation analysis for different levels of
subjective change point probability (Figure A1). The

Figure 6. Baseline-dependent
drug effects on learning rate.
(A) Individual differences in
the clonidine and scopolamine
effect on learning rate as a
function of participants’
learning rate in the placebo
session, separately for the
trials with no change point,
nonobvious change points, and
obvious change points. Note
that the apparent correlations
for the no-CP and obvious-CP
trials and part of the correlation
for the nonobvious-CP trials
are driven by regression to the
mean (see B). (B) Permutation
distributions of the correlation
coefficients predicted by
regression to the mean (the
plots corresponds to those in
A). The red lines indicate our
observed correlations.
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results of this additional analysis suggest that clonidine
had baseline-dependent effects on learning rate above
and beyond regression to the mean for change point
probabilities between .20 and .40. For scopolamine, this
analysis only revealed (marginal) evidence for baseline-
dependent effects for change point probabilities below
.025. It must be noted, however, that change point prob-
ability was far from equally distributed, as the vast major-
ity of trials had a change point probability below .10.
There were especially few trials with change point prob-
abilities between .40 and .80, which may have prevented
the detection of baseline-dependent effects in this range.
Thus, the results of this additional analysis must be con-
sidered with caution.

Second, baseline-dependent drug effects on learning
rate would produce lower across-subject variance in
learning rate in the drug sessions than in the placebo ses-
sion, but regression to the mean would not (Kelly &
Price, 2005). We tested this prediction using Pitman’s test
of equality of variance in paired samples (Pitman, 1939).
For the nonobvious change point trials, the across-subject
variance in learning rate was indeed lower in the clonidine
(0.007) and scopolamine (0.012) sessions than in the
placebo session (0.049; t(15) = 5.9, p < .001 and t(15) =
3.0, p = .008, respectively). For the trials on which no
change point occurred and for the obvious change
point trials, the variance in learning rate did not differ
between sessions (all ps > .2) Together, the results from
these two analyses strongly suggest that both clonidine
and scopolamine had baseline-dependent effects on
learning rate, but selectively following nonobvious change
points.

STUDY 2

Having established that the effects of clonidine and sco-
polamine—like those of atomoxetine in our previous
study—on learning rate depend on individual differences
in baseline learning rate, we sought to explore the ge-
netic basis of these individual differences in learning rate.
We hypothesized that such differences in learning rate
might be related to interindividual variation in genes con-
trolling noradrenergic function. Although previous re-
search has examined in detail how dopaminergic genes
modulate the efficacy of particular neural computations
(Frank & Fossella, 2011), very little is known about the
potential role of noradrenergic genes in specific neural
computations. The aim of Study 2 was to conduct a first
exploration of this important question by examining how
learning rate may be affected by interindividual variation
in genes coding for the synthesis of NE (DBH), for metab-
olizing NE (COMT ), for removing NE from the synap-
tic cleft (NET ), and for adrenergic receptor sensitivity
(ADRA2A, ADRB1). To this end, we administered the pre-
dictive interference task to a group of 151 young adults
who were genotyped for nine single-nucleotide polymor-
phisms (SNPs) in genes assumed to affect noradrenergic

function. We envisaged that the resulting data set would
reveal promising candidate genes that may be the focus
of future confirmatory studies.

Methods

Participants

Saliva samples were collected from 151 healthy, highly
educated young adults, who completed the predictive in-
ference task described above. Five participants were ex-
cluded from analyses because they fully updated their
predictions to the most recent outcome on nearly all tri-
als, suggesting a misunderstanding of the task structure.
The data from nine other participants were discarded be-
cause no high-quality DNA could be extracted from the
saliva sample. The remaining sample hence consisted of
137 participants (mean age = 21.5, range = 18–28; 110
women). The study was approved by the medical ethics
committees of the Vrije Universiteit Amsterdam and
Leiden University, and written informed consent was
obtained from all participants.

Genotyping and Statistical Analyses

A saliva sample was collected from each participant using
the Saliva DNA Collection, Preservation and Isolation Kit
(Norgen Biotek Corporation). DNA was extracted from
saliva using the Oragene kits (DNA Genotek, Inc.). In
total, 137 participants were genotyped using Sanger
Sequence technology for three variants in the NE trans-
porter gene (NET: rs5569, rs2242446, rs28386840), three
variants in the dopamine beta-hydroxylase gene (DBH:
rs1108580, rs1611115, DBH50 ins/del), and variants in
the α2A receptor gene (ADRA2A: rs1800544), beta-1
receptor gene (ADRB1: rs1801253), and COMT gene
(rs165599). Because of missing genotypes, six samples
had to be discarded from the analyses of the ADRB1
(rs1801253) SNP and NET (rs28386840) SNP. Three sam-
ples had to be discarded from the analysis of the ADRA2A
(rs1800544) SNP, two from the analysis of the DBH50 ins/
del SNP, and one from the analysis of the NET (rs5569)
SNP. For all SNPs, the genotypes were in Hardy–
Weinberg equilibrium ( ps > .05), with the exception of
the COMT SNP ( p = .0059), which was therefore dis-
carded from further analysis. The genotype frequencies
for the remaining eight SNPs are reported in Table 1.
The effect of each SNP on (untransformed) learning

rate was examined with a general linear model analysis
that included genotype (two levels, see below) as a cate-
gorical between-subject variable, trial type as a repeated-
measures variable (no change point, nonobvious change
point, obvious change point; see Study 1), and age as
nuisance covariate. In each analysis, individuals homozy-
gous for the ancestral allele were contrasted with the
combined group of heterozygotes and individuals homo-
zygous for the derived allele.
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Results

Table 1 reports the mean learning rates and the statistical
main effect of genotype on learning rate for each of the
eight SNPs that were included in the analyses. For most
of the SNPs, there was no association with learning rate.
However, the ADRA2 ( p = .011) and one of the NET
SNPs (rs28386840, p = .03) showed suggestive evidence
for an association with learning rate. As the associations
did not survive the Bonferroni correction for multiple
tests (corrected α = .00625), the findings should be re-
garded as hypothesis-generating and need confirmation
in a follow-up study. Mean learning rates were 0.496
(SD = 0.127) for trials on which no change point oc-
curred, 0.480 (SD = 0.165) for nonobvious change point
trials, and 0.759 (SD = 0.128) for obvious change point
trials. There were no interactions between genotype
and trial type.

DISCUSSION

In the present research, we report three main findings.
First, we replicated our recent findings that trial-to-trial
variability in centroparietal P3 amplitude—a putative in-
dex of phasic catecholamine release in the cortex (Polich,
2007; Nieuwenhuis et al., 2005; Pineda et al., 1989)—
predicts learning rate and mediates the effects of outcome-
evoked surprise and belief uncertainty on learning rate
( Jepma et al., 2016). Replication of these effects in a
new group of participants reinforces the idea that these
are true and robust effects. Second, pharmacological sup-
pression of either NE or ACh activity produced baseline-
dependent effects on learning rate following nonobvious
task changes, but not following obvious task changes or
during periods of stability. Third, we identified associa-
tion of two SNPs, located in genes coding for the NE
transporter and the α2A receptor, with learning rate, thus
providing first evidence for a genetic underpinning of
this computational variable. At the moment, the genetic
findings should be regarded as hypothesis-generating
and provide promising candidates for future studies in-

vestigating the genetic basis of individual differences in
belief updating under uncertainty.

Our P3 results contribute to the discussion about the
functional role of this event-related brain potential. That
single-trial P3 amplitude was sensitive to outcome-
evoked surprise and predicted learning rate supports
the prevalent context-updating theory of P3 function,
which assumes a role for the centroparietal P3 process
in the updating of one’s internal model of a task context
(Donchin & Coles, 1988). Interestingly, two recent stud-
ies found that model-based estimates of belief updating
correlated with P3 amplitude measured over frontocen-
tral (P3a), but not centroparietal (P3b), scalp regions
(Bennett, Murawski, & Bode, 2015; Kolossa et al.,
2015). The reason for the more anterior scalp distribu-
tions in these studies remains to be examined; these
may be related to the different paradigms used in these
studies and/or to the fact that these studies focused on
Bayesian, model-based indices of belief updating while
we used a direct behavioral measure of learning rate.
Centroparietal P3 amplitude also reflected the uncer-
tainty about the outcome-generating process (relative
uncertainty, which is strongly related to estimation uncer-
tainty). In contrast, P3 amplitude did not reflect the nois-
iness of the generative process, which varied between
task blocks. Estimation uncertainty and noise are both
considered forms of expected uncertainty, which make
it harder to detect environmental change. However,
these two types of expected uncertainty differently affect
learning rate and are represented in partially different
brain regions (Kobayashi & Hsu, 2017; Payzan-LeNestour
et al., 2013). Importantly, whereas uncertainty due to
noise is irreducible, estimation uncertainty decreases
with each additional observation during a period of sta-
bility. In terms of precision, noise and estimation un-
certainty can be considered as the inverse precisions of
observations and beliefs, respectively (cf. Kwisthout,
Bekkering, & van Rooij, 2017): Noise determines how
precisely outcomes can be predicted under a given gen-
erative distribution (corresponding to the standard devi-
ation of the mean), and estimation uncertainty reflects

Table 1. SNPs, Genotype Frequencies, and Genotype Effects on Learning Rate

Gene NET NET NET DBH DBH DBH ADRA2A ADRB1

SNP rs5569 rs2242446 rs28386840 rs1108580 rs1611115 DBH*5 INS/DEL rs1800544 rs1801253

Allele GG GA/AA TT CT/CC AA TA/TT GG AG/AA CC TC/TT ins/ins del carriers CC GC/GG CC GC/GG

N 62 60/14 69 56/12 60 51/20 35 77/25 86 45/6 43 58/34 66 55/13 78 46/7

Mean LR 0.58 0.56 0.56 0.59 0.56 0.60 0.56 0.58 0.58 0.57 0.58 0.58 0.60 0.56 0.57 0.59

F 0.1 3.0 4.6 0.9 0.0 0.0 6.7 0.4

p .73 .08 .03* .36 .84 .96 .01* .55

Mean LR = mean untransformed learning rate. Bonferroni-corrected α = .00625.

*p < .05 (uncorrected).

Jepma et al. 13



the imprecision of the observer’s internal model of, or
belief about, the generative distribution (corresponding
to the SEM). Our finding that P3 amplitude is not sensi-
tive to noise needs to be verified using tasks in which
noise levels vary within task blocks.

Given the evidence for a link between the centroparie-
tal P3 and the phasic LC–NE response (De Taeye et al.,
2014; Nieuwenhuis, 2011; Polich, 2007; Nieuwenhuis
et al., 2005; Pineda et al., 1989), our P3 results provide
indirect support for a role of the catecholamine systems
in the adjustment of learning rate based on ongoing es-
timates of change and uncertainty. Importantly, however,
the P3 results cannot dissociate the specific contributions
of NE and DA activity because (i) LC activity results in the
corelease of DA from noradrenergic terminals (Devoto &
Flore, 2006) and (ii) there are bidirectional projections
between the dopaminergic nucleus ventral tegmental
area and the LC (Sara, 2009). Indeed, dopaminergic
drugs have been shown to affect the centroparietal P3
to unexpected and novel stimuli (Rangel-Gomez, Hickey,
van Amelsvoort, Bet, & Meeter, 2013; Kahkonen et al.,
2002; Hansenne, 2000). In addition, P3 amplitude can
also be modulated by pharmacological manipulations of
the cholinergic system (Brown et al., 2016; Brown, van
der Wee, et al., 2015; this study), presumably reflecting
mutual interactions between the basal forebrain and
the LC (Acquas, Wilson, & Fibiger, 1998; Adams & Foote,
1988; Egan & North, 1985), as will be discussed below.

Both clonidine and scopolamine were observed to
have baseline-dependent (i.e., normalizing) effects on
learning rate, but specifically following nonobvious
change points. Baseline-dependent drug effects are
consistent with evidence that the relationship between
neuromodulatory activity—in particular catecholamine
activity—and neurocognitive function is not monotonic
but follows an inverted U-shape (Gibbs et al., 2014; de
Rover et al., 2012; Cools et al., 2009; Luksys et al., 2009;
Aston-Jones & Cohen, 2005; Cools & Robbins, 2004;
Coull, 2001). But why would these baseline-dependent
drug effects be specific to the nonobvious change points?
Nonobvious change point trials are likely associated with
high uncertainty about whether or not a change oc-
curred; hence, higher-level processes, such as the explic-
it attribution of prediction errors to change versus noise,
may not provide sufficient guidance on whether or not
beliefs should be updated on these trials. Consequently,
stimulus-driven effects on learning rate, mediated by
catecholamine-induced increases in neural gain (Aston-
Jones & Cohen, 2005; Servan-Schreiber, Printz, & Cohen,
1990), may have a relatively large impact on belief updat-
ing following nonobvious change points, which could ex-
plain the specificity of the drug effects to these trials.
The different effects we found for obvious and nonobvi-
ous change points stress the importance of dissociating
between clear and ambiguous task changes when study-
ing the role of neuromodulatory systems in adaptive be-
havior. A remaining question is why, in our previous

study, atomoxetine had baseline-dependent effects on
learning rate following both obvious and nonobvious
change points ( Jepma et al., 2016). A possible reason
for this more general effect of atomoxetine is that
atomoxetine-induced increase of catecholamine levels
results in activation of all types of catecholamine re-
ceptors, whereas the effects of clonidine are specific to
the α2 receptor. In addition, the mechanisms through
which drug-induced decreases and increases in base-
line NE activity—the presumed effects of clonidine and
atomoxetine, respectively—can both produce baseline-
dependent effects remain to be explored.
Thus, our clonidine findings may suggest that the α2

receptor plays an important role in belief updating fol-
lowing ambiguous changes. Importantly, antagonism of
the muscarinic ACh receptor by scopolamine, however,
produced a highly similar baseline-dependent effect on
learning rate following nonobvious change points. Fur-
thermore, clonidine and scopolamine had a similar sup-
pressive effect on P3 amplitude during the predictive
inference task and similarly affected performance and
ERPs during tasks measuring temporal attention and pha-
sic alertness (Brown et al., 2016; Brown, Tona, et al.,
2015; Brown, van der Wee, et al., 2015). It seems unlikely
that the strikingly similar effects of clonidine and scopol-
amine across a range of cognitive and neural measures
were realized through two separate neural mechanisms
specifically involving noradrenergic and cholinergic neu-
romodulation. Instead, we would argue that it is more
likely that the similar effects of clonidine and scopolamine
were caused by interactions between the noradrenergic
and cholinergic systems (Briand, Gritton, Howe, Young,
& Sarter, 2007). Animal studies have provided evidence
that ACh stimulation increases LC activity and that scopol-
amine reduces noradrenergic baseline activation by antag-
onizing muscarinic receptors in the LC (Adams & Foote,
1988; Egan & North, 1985). In addition, clonidine has been
shown to inhibit cortical ACh release (Acquas et al., 1998),
probably by stimulating α2 receptors in the basal forebrain
(cf. Dringenberg & Vanderwolf, 1998). Thus, both cloni-
dine and scopolamine may have reduced NE as well as
ACh activity, which could explain their similar effects. Un-
fortunately, this means that the specific contributions of NE
and ACh to learning rate regulation cannot be dissociated
based on our pharmacological manipulations. Future stud-
ies using more specific manipulations and measures, per-
haps in animal models, are required to dissociate the
functional roles of these two systems. Our findings under-
line the importance of studying interactions between dif-
ferent neuromodulatory systems in regulating cognitive
function. They also highlight the importance of manipulat-
ing more than one neuromodulatory system to prevent
premature conclusions regarding the specificity of ob-
served effects to the system under investigation.
Our findings that (i) there was a positive trial-to-trial

relationship between P3 amplitude and learning rate and
(ii) clonidine and scopolamine suppressed P3 amplitude
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at the group mean level seem at odds with our finding that
(iii) clonidine and scopolamine did not produce an overall
reduction in learning rate. The second and third finding
may reflect the complexity of effects of pharmacological
manipulations on behavior, such as nonlinear (inverted U
shape) relationships between tonic neuromodulator levels
and cognitive performance. Relatedly, the drugs may
have suppressed both tonic (spontaneous) and phasic
(stimulus-evoked) NE and ACh activity (Adams & Foote,
1988), and it is unknown whether learning rate is associ-
ated more with one or the other of these two components
of activity or with the ratio between them. Individual differ-
ences in phasic-to-tonic ratio may also underlie our find-
ings of baseline-dependent drug effects on learning rate,
as the effects of pharmacological manipulations on this
ratio may depend on someone’s natural activity pattern.
Future studies directly measuring both phasic and tonic
neuromodulatory activity (Bari & Aston-Jones, 2013) and
their relationships to belief updating are needed to test
these ideas. It is also possible that the drug-induced reduc-
tion of outcome-evoked NE and ACh release—as reflected
in a smaller P3—did have a suppressive effect on learning
rate, but that this was compensated for by increased reli-
ance on other, possibly higher-level, processes. Indeed,
P3 amplitude was a partial rather than a complete mediator
of the effect of prediction error on learning rate, suggesting
that this effect was mediated by processes not reflected in
P3 amplitude as well.
In Study 2, we explored to what extent individual

differences in learning rate are associated with genetic

variation in specific genes that are presumed to play a
role in the noradrenergic pathway by analyzing several
SNPs known to affect the dynamics of the LC–NE system.
None of the effects of these SNPs on learning rate were
statistically significant after correction for multiple com-
parisons, so Study 2 does not warrant any strong con-
clusions. However, the study identified two SNPs as
promising targets for future research with a larger sample
size and greater power to find a statistical difference. At the
moment, our findings are merely hypothesis-generating.
Although learning rate did not show association with SNPs
affecting the synthesis of NE (DBH) or sensitivity of the β1
receptor (ADRB1), SNPs located in genes coding for the
removal of NE from the synaptic cleft (NET ) and for sen-
sitivity of the α2A receptor (ADRA2A) did. Notably, the
two SNPs that reached suggestive significance can be
linked to the two noradrenergic drugs that produced
baseline-dependent effects on learning rate in our present
and previous studies: atomoxetine blocks the NE trans-
porter (NET), and clonidine has strongest binding affinity
for the α2A receptor. An effect on learning rate of ADRA2A
would be particularly interesting in light of previous re-
search that found this gene to be a key genetic determi-
nant of P3 amplitude (Liu et al., 2009), which showed a
strong relationship with learning rate in our studies. Fu-
ture genetic association studies with increased statistical
power are needed to examine the consistency of the
relationship between learning rate and noradrenergic
receptor genes, including those coding for the α1,
α2B, and β2 receptors.
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